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I asked God for strength, that I might achieve.  

I was made weak, that I might learn humbly to obey. 

I asked for health, that I might do great things.  

I was given infirmity, that I might do better things. 

I asked for riches, that I might be happy.  

I was given poverty, that I might be wise. 

I asked for power, that I might have the praise of men.  

I was given weakness, that I might feel the need of God.  

I asked for all things, that I might enjoy life.  

I was given life, that I might enjoy all things.  

I got nothing I asked for but everything I hoped for.  

Almost despite myself, my unspoken prayers were answered.  

I am, among men, most richly blessed. 

- unknown 
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SUMMARY 

 

 Understanding of plasma confinement is an essential component in development 

of a fusion reactor.  Plasma confinement directly relates to performance of a fusion 

reactor in terms of energy replacement time requirements on other design parameters.  

Although a variety of levels of  confinement have been achieved under different 

operating conditions in tokamaks, tokamak confinement is generally identified as being 

either Low (L-mode—poor confinement) or High (H-mode—good confinement).  It has 

long been noted that radial profiles of density, temperature, rotation velocity and radial 

electric field are quite different for L-mode and H-mode confinement. 

In operation of a tokamak experiment, the plasma confinement condition 

generally changes from L-mode to H-mode over a few hundred milliseconds, sometimes 

quite sharply.  Such a difference in transition period seems to be largely due to operating 

conditions of the plasma.  Comparison of experimental data exhibits various distinctions 

between confinement modes.   One noteworthy distinction between confinement modes is 

development of steep  density and temperature gradients  of electrons and ions in the 

plasma edge region of High confinement, H-modes, relative to Low-confinement, L-

modes.    

 The fundamental reason for the change for L-mode to H-mode is not understood. 

Previous studies have suggested that it is the development of reduced diffusive transport 

coefficients that require a steepening of  the gradients in a localized region in the edge 

plasma, the “ transport barrier” in H-mode confinement.  Other studies show that the 

radial force balance between  pressure gradient forces and electromagnetic (radial electric 

field and VxB) forces require radial particle fluxes to satisfy a pinch-diffusion relation 

that varies as these forces change. A recent study suggests that the major differences 

between L-mode and H-mode are associated with the electromagnetic forces in the 



 x

“pinch velocity” and the pressure gradient, not in the diffusion coefficients that multiplies 

the pressure gradient.  

 The present research examined in detail the time evolution of the radial force 

balance and the particle and energy transport during the L-H transition.  For the analysis, 

DIII-D shot #118897 is selected for transition between L- and H-mode confinement.  

Plasma conditions in L-mode, near the L-H transition and following the transition are 

selected for analysis of various parameter profiles. 

           The initial analysis is based on the four principal equations for plasma: particle 

balance, momentum balance, force balance and heat conduction.  Based on these 

equations, specific equations have been derived for: toroidal and radial momentum 

balances, diffusion coefficient, pinch velocity and heat conduction relation for 

interpretation of experimental transport parameters.  The analysis of these equations, 

using the measured data, establishd how various terms in the radial force balance (radial 

electric field, VXB (electromagnetic) force, and pressure gradient) and the diffusive 

transport coefficients evolve over the confinement mode transition.   
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CHAPTER 1 

BACKGROUND 

 

1.1 Nuclear reactions and fusion 

 There are two methods of power generation based on nuclear energy: fission and 

fusion.  Both methods enable the generation of large amount of energy with small amount 

of resources, implementing similar working principles of nuclear physics.  It is not 

possible to obtain energy from both fission and fusion for all elements and isotopes, as 

most of the lightest elements will release energy by fusion and most of the heaviest 

elements by fissioning.   

 The feasibility of nuclear reaction processes for a given element is determined 

based on the  binding energy of its atomic structure, as shown in Fig. 1. 

 

FIGURE 1:  Nuclear binding energy as a function of atomic mass number1 

 Binding energy is an indicative measure of the mass defect between its nucleus 

and the sum of its components.  It is defined as the amount of energy required to 

disassemble a nucleus into its components.  In relation to nuclear reactions, it is the 
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measure of energy released for a given reaction.  Based on Fig. 1, it can be determined 

that iron (Fe) has the highest binding energy.  In general, elements lighter than iron are 

subject to undergo fusion and heavier elements fission2.    

 General energetics determines the energy release in both fission and fusion.  

Nuclear power generation is based on the mass difference between the isotopes involved 

in the reaction, which indicates a conversion of mass to energy.  The energy is released in 

the form of kinetic energy of recoiling nuclei and nuclear particles.  For a given nuclear 

reaction, the mass defect is generally calculated with rest mass energy3. 

 
   a b c d

a b compound c d

m m m m m

   

    
   (1)  

The calculation of mass defect in a reaction is based on the rest mass energy of atoms, 

which is described by Einstein's famous equation. 

2
0E m c       (2) 

 Nuclear fusion is the process of combining two lighter isotopes to produce a 

heavier isotope.  Fusion involves i) combination of two light nuclei, ii) formation of an 

unstable compound nucleus, and iii) decay into two or more nuclei and nuclear particles.  

In the process, the mass defect between reactants and products is converted into energy.  

In theory, nuclear fusion can provide unlimited amount of energy through i) a self-

sustaining fuel cycle and ii) a tritium breeding method.  Table 1 lists known fusion 

reactions and the corresponding amount of released energy3.  Each reaction involves 

different combinations of reactant isotopes with varying amounts of energy released. 

TABLE 1: Fusion reactions and corresponding Q-values 

REACTION Q‐value 
(MeV) REACTANTS PRODUCTS

D + T 4He + n 17.6

D + D 
T + p 4
3He + n 3.25

D + 3He 4He + p 18.2
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 The feasibility of fusion reactions is related to the interaction probability (also 

referred as cross section of reaction) as a function of energy.  Interaction probabilities for 

given fusion reactants are shown in Fig. 2 as a function of energy.  It can be determined 

that the deuterium-tritium reaction is the most feasible fusion reaction with the largest 

probability of reaction for the lowest required energy.   

 

FIGURE 2: Fusion reaction rate4 

 Majority of the listed fusion reactions involve the use of hydrogen isotopes, 

deuterium and tritium, as reactants.  Two hydrogen isotopes are easily produced or found 

in water.  The composition of hydrogen indicates deuterium abundance of 0.0153 at.% in 

natural state5.  The composition indicates that deuterium can be harvested from any water 

source, which presents an unlimited abundance and availability.  In addition to deuterium 

sources, tritium can be produced through i) absorption of neutrons by lithium isotopes, as 

listed in table 2, and ii) the D+D reaction.  In fusion reactor designs, lithium isotopes are 
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contained in the blanket in order to breed tritium.  Neutron absorption reactions for 

tritium breeding are listed in table 2. 

TABLE 2: Tritium breeding reactions6 

REACTION

REACTANTS PRODUCTS

n+6Li T+4He

n+7Li T+4He+n'

 

1.2 Plasma 

 Plasma is often known as the forth state of matter alongside solid, liquid, and gas.  

It displays distinctive characteristics as a phase of material that differs from other phases.  

Plasma is defined as a collection of atomic particles free of coulombic and nuclear 

bonding3, e.g.  free ions and electrons.  In such a state, particles interact in two different 

methods.  Electrons, neutrons and protons that compose an atom are able to interact with 

nearby particles.  Charged particles interact via coulombic interaction and scattering and 

neutrons via scattering.   

 For the purpose of power generation based on fusion, a thermonuclear plasma 

state is required to generate sufficient amount of power.  A thermonuclear plasma is 

defined as plasma heated to an extremely high temperatures, on the order of 710  K.   

 

1.3 Magnetic confinement and tokamak 

 In today's fusion research, the leading confinement concept is magnetic 

confinement.  The concept is based on the Lorentz force on moving charged particles in a 

magnetic field, which is orthogonal to both the particle velocity and the magnetic field.  

The magnetic confinement operates based on the utilization of electromagnets 

surrounding a plasma chamber.  Electromagnets produce magnetic fields that apply 
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forces on plasma ions and electrons as a confinement method.  The leading magnetic 

confinement concept, the tokamak, was first introduced by Soviet Union scientists who 

developed the concept of a toroidal chamber with a set of coils surrounding it.  As shown 

in Fig. 2, tokamak devices are composed of a plasma confinement chamber and 

surrounding toroidal and poloidal coils.  In addition, leading tokamak devices feature 

various plasma heating methods, external fueling sources and a surrounding vaccum 

chamber for an improvement in the performance of the device.  The tokamak is 

considered the most feasible method of plasma confinement for power generation.  The 

leading tokamak design of the International Thermonuclear Experimental Reactor (ITER) 

includes 18 toroidal and 6 poloidal superconducting coils for magnetic field generation, a 

helium-cooled vacuum chamber, and various external heading devices7.     

 

 

FIGURE 3: Tokamak reactor8  

 

1.4 Importance of confinement 

 Plasma confinement determines two major factors in the development of a fusion 

reactor: i) the feasibility of fusion reactor operation and ii) plasma performance.  The 
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feasibility of fusion reactor operation depends heavily on plasma confinement.  Several 

factors are considered for the feasibility of fusion such as plasma temperature and power 

balance.   In terms of power balance, plasma energy and energy loss are considered as 

shown in Eq. 3.  

2 21 5 3
1

4 z zfus
p E

nT
n U f n L

Q


 
    

 
    (3) 

 The plasma power balance equation accounts for the sum of external and plasma 

heating power on the left side and radiation and transport loss on the right.  n  is the total 

density, 
fus

  is the fusion reactivity, U  is the alpha particle energy in fusion, zf  and 

zL  are the ion fraction and radiation emissivity of the plasma, T is the plasma 

temperature, and E  is the energy confinement time.  pQ  in power balance equation is 

the plasma amplification factor, a measure of fusion feasibility.  The plasma  energy 

amplification factor is calculated as the ratio of fusion power and external heating input 

power, as shown in Eq. 4. 

.

fusion
p

ext heating

P
Q

P
      (4) 

 Another measure of fusion feasibility is the Lawson criterion of ignition, shown in 

Eq.5.  The expression is derived from the plasma power balance equation by neglecting 

the radiation loss term. 

 12
E E Lawson

nT nT
const U

  


    (5) 

 The progress of fusion reactor performance is determined based on two 

parameters, the Lawson criterion of ignition and the plasma amplification factor.  Current 

research reactors with D-D and D-T fuels have not reached commercial reactor 

confinement modes6.    
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FIGURE 4: Lawson criterion and  power amplification factor for plasma type6 

 The importance of confinement quality is directly related to the calculation of 

feasibility parameters, the Lawson criterion and the plasma energy amplification factor.  

The energy confinement time appears directly in the calculation of the Lawson criterion.  

An increase in the energy confinement time directly indicates the improvement in 

confinement quality.  Experimental surveys have determined that plasma confinement 

improvement leads to a great increase in temperature and density.  Results indicate that 

an improvement in plasma confinement generate a higher Lawson criterion of ignition.  

In fusionP  for the plasma amplification factor, temperature and density play  important 

roles in determining fusion power.  The energy of the  plasma is directly related to the 

increase in temperatures and densities that arise as a result of confinement improvement.   
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CHAPTER 2 

INTRODUCTION 

 

 With the first achievement of higher quality plasma confinement9 (H-mode), 

analysis of the differences between low (L-mode) and high confinement (H-mode) 

regimes10 and the transition between them emerged as a major focus of tokamak research 

that continues today11.     Analysis of the L-mode to H-mode transition has led to 

identification of distinctions in plasma profiles associated with confinement mode 

changes10.  One distinction involves a drastic change in radial electron density and 

temperature profiles.  In L-mode, density and temperature profiles decrease only 

gradually as a function of increasing  radius within the edge plasma.  However, when the 

plasma transitions from L-mode to H-mode, a sharp steepening of the gradient is 

displayed in both the density and temperature profiles across the edge region, which is 

referred to as the formation of an  edge pedestal.  In general, the edge pedestal appears 

just inside the LCFS (last closed flux surface) at normalized radius greater than 0.86.  

Other distinctions between L-mode and H-mode regimes includes changes in the radial 

electric field and rotational velocity profiles in the edge plasma10,12.  

 The study of the physics of the edge pedestal has been a major research area for 

decades because of its importance for the performance of future tokamaks such as the 

International Thermonuclear Experimental Reactor (ITER)13.  Based on previous 

studies13,14, researchers have determined that the performance of ITER may depend 

heavily on the temperature and density of the edge pedestal, hence on the temperature 

and density gradients in the edge pedestal.   

 The causes of the transition of the edge pedestal profiles from the L-mode to H-

mode forms remain a subject of active theoretical and experimental investigation (as 

summarized recently in Ref. 11).   The formation of a “transport barrier” due to the shear 
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suppression of fluctuation-driven diffusive transport coefficients15,16, the penetration and 

ionization of recycling neutrals17, pressure gradient limits set by microinstabilities18 and 

non-diffusive transport19,20 associated with  electromagnetic forces and ion orbit loss have 

been investigated.    

 This paper reports an interpretation of the detailed time evolution of measured 

density, temperature and rotation profiles across the L-H transition in terms of non-

diffusive as well as diffusive transport mechanisms; i.e. the evolution of the 

electromagnetic forces, pressure gradients, rotation velocities and momentum transport 

frequencies (which determine the particle diffusion coefficient), thermal diffusion 

coefficients and ion orbit loss during an L-H transition in a DIII-D discharge21.  Density, 

temperature and rotation velocity profiles were resolved on roughly 50 ms intervals from 

just before until well after the L-H transition. The radial and toroidal force balances, the 

continuity equation and the energy balance equations were employed to interpret from the 

measured profile evolution the evolution of momentum transport rates and the particle 

diffusion coefficient, of the pinch velocity and of the thermal diffusivity.   
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CHAPTER 3 

EXPERIMENTAL DATA 

 

3.1 Discharge selection and profile fitting procedure 

 In order to interpret the evolution of diffusive and non-diffusive transport, DIII-D 

discharge #118897 was selected for the time intervals from 1525 ms (just before L-H 

transition) to 2140 ms (well after the L-H transition).  The motivations behind selection 

of #118897 for analysis are i) clear and long transition between L-mode to H-mode based 

on the density profile at the pedestal, ii) good Magnetohydrodynamic (MHD) stability 

based on triangularity values, and iii) a long initial H-mode phase without ELM 

interruption22.  In total, 14 time slices were selected for analysis.  Selected timeslices 

include L-mode (1525ms), early transition (1555ms), transition (1640 - 2040ms) and 

fully established H-mode (2090-2140ms).  These descriptions were chosen based on the 

electron density profile at the pedestal.   

 In order to construct plasma property profiles, time bins relevant to the 

investigation of L-H transition are selected.  Each time bin contains a sufficient number 

of Thomson pulses and Charge Exchange Recombination (CER) spectroscopy data points 

to ensure the quality of data23,24,25,26.  Experimentally obtained data includes electron 

density, electron temperature, ion temperature, electron pressure, carbon impurity 

fraction, carbon toroidal velocity and carbon poloidal velocity.   

 Hyperbolic tangent fits of the data points generated with Eqs. 6 and 7 were 

utilized for the electron properties,  
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 2
tanh

symx x
Y A B

width

 
  
 
 

  for kneex x     (6) 

   
2

tanh
sym

knee

x x
Y A B slope x x

width

 
     
 
 

  for kneex x    (7) 

and spline  fits were used for the other quantities, where parameters are obtained from 

fitted profiles27.  Iterative spline fitting processes were employed to ensure an accurate 

representation of plasma properties.  Fitted profiles were used in the GTEDGE simulation 

as input parameters.  The experiment data measurements, analysis, and validation were 

performed by other members of the DIII-D team.   

 

3.2 Experimental data 

Experimental electron density and temperature profiles are shown in Figs. 5 and 

6.  Electron density and temperature profiles display similarity in L-H transition behavior 

in development of pedestal structure, an appearance of an edge pedestal structure as the 

plasma shifts from L-mode to H-mode.  It is noted that starting at about 1640ms the edge 

pedestal position stays relatively fixed for both electron density and temperature 

profiles27.  A general trend is observed where the electron density and temperature at the 

inner most radius (ρ = 0.86) steadily increases through transition, indicating improvement 

in confinement and performance 
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FIGURE 5: Experimental electron density profiles 

 

FIGURE 6: Experimental electron temperature profiles 

Experimental ion temperature profiles are shown in Fig. 7.  Ion temperature 

profiles were constructed using the spline fitting method.  Ion temperature profiles, unlike 

electron density and temperature profiles, do not develop such a distinctive edge pedestal 

(sharp gradient region).  Given such a characteristic in profile evolution, spline fitting 

method provides more accurate representation of experimental data than hyperbolic 

tangent method27.  A general trend of steady increase in ion temperature at the innermost 
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radius (ρ = 0.86) is observed through the L-H transition.  Just inside the separatrix 

( 1  ) the temperature magnitude remains at about the initial L-mode value.  The ion 

temperature gradient in the edge pedestal initially increases at the L-H transition and then 

remains relatively fixed while the entire profile increases.  The ion temperature profiles 

do not increase monotonically, but rather “oscillates” slightly; the peak temperature at the 

innermost mesh point (ρ = 0.862) is achieved at 1940ms and then decrease slightly.  The 

major change in temperature is observed early in the transition where ion the temperature 

increases dramatically from 1525ms to 1590ms.   

 

FIGURE 7: Fitted experimental ion temperature profiles 

 For the rotational velocity profiles, single tangential measurements are obtained 

and decomposed into two components: toroidal and poloidal rotation.  Both rotation 

velocities are measured for C+6 impurity particles but not for the main ion particles due to 

weak charge-exchange associated with deuterium ions in comparison to C+6 ions. 

 Toroidal rotation velocity at the innermost radius (ρ = 0.86) increases steadily as 

the plasma undergoes the L-H transition and enters H-mode.  In L-mode (1525ms), the 

toroidal rotataion profile is relatively flat across the edge region.   
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As plasma enters the transition (1555ms), a significant change occurs in the 

toroidal rotation velocity profile.  While the rotation velocity increases at the L-H 

transition for (ρ < 0.95), a large region of decreased rotation velocity develops in the edge 

(0.96 < ρ < 1.0).  This well-like structure in the toroidal rotation profiles persists to about 

1740 ms, even though the magnitude of the rotation velocity generally increases at all 

normalized radii after 1555ms.    

 

FIGURE 8: Experimental carbon toroidal rotation velocity 

 The evolution of the poloidal rotation velocity profiles, as shown in figure 9, 

displays more distinctive changes than the toroidal rotation during the L-H transition.  In 

L-mode, the poloidal rotation velocity profile generally increases with radius, but not 

monotonically, exhibit a slight dip centered about ρ = 0.97.  However, there is a sharp 

change in the rotation profile between 1525ms (L-mode) and 1590ms, which is not yet 

complete at 1555ms, changes the direction of the poloidal rotation and creates a broad 

negative dip centered about ρ = 0.96 which persists.  The poloidal rotation inside of ρ = 

0.90 becomes more positive immediately after the L-H transition (1555ms) but then 

becomes more negative at later times.    
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FIGURE 9: Carbon poloidal rotation velocity 

 

3.3 Experimentally inferred data 

 The radial electric field is a calculated quantity constructed from the measured 

carbon impurity density, temperature and rotation velocities using the radial force balance 

equation 

 1
V Br r i i r

i i

E P
n Z e

         (8) 

 The radial electric field profile shown in Fig. 10 evolves in a similar manner to 

the carbon poloidal rotation velocity profile shown in Fig. 9.  In L-mode (1525ms), the 

radial electric field profile is relatively flat across the edge region.  The profile changes 

rather swiftly after the L-H transition as plasma enters the H-mode.  Early in the 

transition (1555ms), the radial electric field develops a negative well-like structure 

reported in previous studies10,28.  This structure is sustained throughout the transition and 

into the fully developed H-mode.     
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FIGURE 10: Radial electric field calculated from radial momentum balance on carbon. 

 Poloidal and toroidal rotation velocities of deuterium are inferred based on 

experimental and calculated parameters.  The deuterium toroidal rotation velocity is 

inferred from the impurity toroidal rotation velocity, V k , using carbon and deuterium 

toroidal velocity equation and the first order perturbation theory.  The perturbation 

estimate for difference in toroidal rotation velocities is  

 
 

exp

0( )
A

j j j j j j j dj k

j k

j j jk dj

n e E e B M n m V
V V

n m

   
 



 

   
 


   (9) 

where djv  and dkv  are experimental toroidal angular momentum transfer frequency for 

deuterium and impurity ions respectively.  Momentum transfer frequencies for deuterium 

and carbon are calculated as part of the perturbation analysis, based on experimental 

parameters,  

 
   

  exp

A A
j j j j j k k k k k

dj

j j k k k

n e E e B M n e E e B M

n m n m V

     




      




   (10) 

  0

exp

( )A
k k k k k j j jk j k

dk
k k k

n e E e B M n m V V

n m V
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




    
    (11) 
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Based on these parameters, the deuterium toroidal rotation velocity is calculated from 

 
 

exp

exp exp exp
0( )

A
j j j j j j j dj k

j k j k k

j j jk dj

n e E e B M n m V
V V V V V

n m

   
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

 

   
    


  (12) 

 

FIGURE 11: Calculated deuterium toroidal rotation velocity profiles 

The deuterium poloidal rotation velocity is calculated using the above deuterium 

toroidal rotation velocity and the radial momentum balance equation for deuterium 

exp
exp exp 1 jr
j j

j

pBE
V V

B B n eB r


 
  


   


     (13) 

The results are shown in Fig. 12 
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FIGURE 12: Calculated deuterium poloidal rotation velocity profiles 

   The deuterium and impurity ions exhibit similar toroidal rotation velocity profiles.  

A large negative well-like structure is observed immediately after the L-H transition 

(1555ms - 1640ms).  Eventually, such structure disappears and relatively linear rotation 

velocity profiles are observed for both ion species in later stages of the H-mode regime.   

For poloidal rotation velocity, very different profile evolutions are observed for 

the two ion species.  For deuterium, a relatively flat rotation velocity profile is observed 

in L-mode (1525ms).  This profile quickly changes with the development of slight dip 

around   = 0.96 and a large increase in magnitude of the positive rotation velocity for   

> 0.96. The carbon poloidal rotation velocity has a more structured profile in L-mode, 

and develops a large negative well in the rotation velocity profile for   > 0.96. 
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CHAPTER 4 

TRANSPORT INTERPRETATION OF EXPERIMENTAL DATA 

 

4.1 Modeling the background plasma with GTEDGE 

 The background plasma is modeled with the GTEDGE code29,30,31 which solves 

coupled i) power and particle balances on the core plasma to obtain particle and power 

fluxes into the scrap off layer (SOL) which are input to ii) “2-pt” integral power, particle 

and momentum balances to calculate power and particle fluxes to the divertor plate and 

recycling neutral fluxes from the divertor plate which are input to iii) a 2D neutral 

transport code that calculates charge exchange neutral fluxes to the wall and recycling 

neutral fluxes  to refuel the core plasma.  Geometric parameters such as X-point and 

divertor strike point locations, plasma minor and major radii and elongation are taken 

from experiment, as are plasma parameters such as the magnetic field, current, etc. The 

elongated plasma is modeled as a circular plasma with effective minor radius 

 21 / 2r r  


chosen to conserve (in the elliptical approximation) the flux surface 

area of the elongated plasma with elongation,  . Other model parameters are adjusted so 

that the code predicts experimental i) line average density, ii) energy confinement time, 

iii) central, edge pedestal and separatrix densities and temperatures, and iv) certain other 

parameters.    This GTEDGE background plasma calculation provides the values of 

particle and heat fluxes crossing the separatrix outward into the SOL and of neutral 

particle fluxes crossing the separatrix inward to fuel the core plasma, as well as the 

distribution of neutral particles in the edge plasma. 

 Using the input experimental density and temperature profile data, the GTEDGE 

code then solves the ion particle continuity equation 
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for the ion radial particle flux,  j j rjr n V  , where  the second term on the right is the 

ionization of recycling neutrals and the last term is the neutral beam source.   
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FIGURE 13: Ion particle flux 

 The calculated radial particle flux generally increased with radius in the edge due 

to the ionization of recycling neutrals, for all times analyzed between 1525 and 2140 ms.  

The magnitude of the calculated particle flux at all radii increased monotonically in time 

from 1525 ms (L-mode) until 1940 ms, then decreased monotonically in time until 

reaching a value about half-way between the 1525 and 1940 magnitudes at 2140ms. 

The GTEDGE code also uses the input experimental density and temperature data 

to solve the ion and electron power balance equations 
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and 

3 3
( )

2 2
e

e e e e e nbe je e k k e

Q
q T n T q q n n L T

r r t

                    
  (16) 
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for the total heat fluxes of ions and electrons, ( )iQ r and  ( )eQ r , respectively.  
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FIGURE 14: Ion heat flux 
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FIGURE 15: Electron heat flux 

 The total ion heat flux profile generally decreases with radius at all times 

considered due to energy exchange with the cooler electrons, with a sharp decrease just 

inside the separatrix due to charge-exchange cooling from interactions with recycling 

neutrals.  There is initially a monotonic decrease of the ion heat flux prosssfile with time, 

but after 1590ms the change in ion profile with time become erratic.  The lowest 
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magnitude ion flux profile occurs at 1690ms and is about half the magnitude of the L-

mode profile at 1525ms, and the magnitude of the profile at the final time analyzed 

(2140ms) is about 25% larger than this lowest value. 

 The total electron heat flux profile generally increases with radius at all times, due 

to energy exchange with the hotter ions.  The magnitude of the electron heat flux profiles 

exhibits the same variation with time as discussed above for the total ion flux profile, 

indicating a variation in the total energy flux into the edge region from the core plasma, 

not a variation in the interaction among ions and electrons in the edge plasma. 

The particle and heat fluxes calculated from the GTEDGE background plasma 

calculation described in the previous paragraph are used as separatrix boundary 

conditions.   The nbq terms represent neutral beam (or other) heating, jeq is the ion-to-

electron collisional energy transfer, and the last terms in Eqs. 15 and 16 represent charge-

exchange cooling of the ions and radiation cooling of the electrons, respectively, which 

are evaluated using the neutral distribution calculated as part of the background plasma 

calculation described in the previous paragraph.  The quantities ,j eq .are the conductive 

heat fluxes of ions and electrons.  Similar equations obtain for other ion species “k” 

present in the plasma, and the electron density is constrained by quasi-neutrality.  

 Equations 14 - 16 are particle and energy balances which determine the total 

outward fluxes of particles and energy.  For the most part, these fluxes are due to 

transport processes taking place in the plasma, which we would like to interpret from the 

measured density, temperature and rotation profiles.  However, some part of these fluxes 

are due to ions which free-stream out of the plasma on loss orbits that intersect with a 

material surface or cause the ion to be lost by scattering or charge-exchanging outside the 

last closed flux surface, and the above fluxes need to be reduced by the fraction of the 

plasma ion particle and energy fluxes due to ion orbit loss. 
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Following32, we make use of the conservation of canonical toroidal angular 

momentum 

  0 0 0 0RmV f e const R mV f e                                                  (17) 

to write the orbit constraint for an ion introduced at a location “0” on flux surface 0 with 

parallel velocity 0V ,where f B B   , R is the major radius and  is the flux surface 

value.  The conservation of energy and of poloidal angular momentum 
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further require  
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where   is the electrostatic potential.  The quantity 0 0 0V V   is the cosine of the initial 

guiding center velocity relative to the toroidal magnetic field direction.  Using Eq. 19 in 

Eq. 17 and squaring leads to a quadratic equation in the initial ion velocity 
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                            (20) 

Note that Eq. 20 is quite general with respect to flux surface geometry representation of 

R , B and the flux surfaces  .  By specifying an initial “0” location for an ion with 

initial direction cosine 0 , and specifying a final location on the flux surface  , Eq. 20 
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can be solved for the minimum initial ion speed 0V that is required in order for the ion 

orbit to reach the final location.   

Thus, Eq. 20 can be solved for the minimum ion energy necessary for an ion 

located on an internal flux surface to cross the last closed flux surface at a given location 

or to strike the chamber wall at a given location, etc.  All of the particles with speeds 

greater than this  0min 0V  are lost across the last closed flux surface (and assumed in this 

work not to return) or strike the chamber wall.  For the usual DIII-D anti-parallel 

current/magneitic field configuration, the quantity  0min 0V   is very large for particles 

with parallel velocity components opposite to the direction of the toroidal magnetic field 

 0 0  , which execute banana orbits inside the flux surface, but becomes smaller with 

increasing 0 0   (i.e. as the particle velocity becomes more nearly aligned with the 

toroidal magnetic field direction).  

GTEDGE calculates  0min 0V  , using the electrostatic potential calculated by 

integrating the input experimental radial electric field, an approximate representation of 

the magnetic flux surface geometry described 

by  ,,( , ) ( , ), ( , ) / ( , ), ( , ) 1 ( )cosR r Rh r B r B h r h r r R               , and an 

approximate flux surface     2 20
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2 2
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 which follows from 

Ampere’s law and the assumption of uniform current density.  

Since  0min 0V  decreases with radius, cumulative (with increasing radius) 

particle, momentum and energy loss fractions can be defined 
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             (23) 

where    2
min 0 0min 0 2mV kT   is the reduced energy corresponding to the minimum 

velocity for which ion orbit loss is possible, and an initially Maxwellian ion distribution 

has been assumed.  The quantities  n  and  ,n x  in Eqs. 21 - 23 are the gamma 

function and incomplete gamma function.   The ion orbit loss corrected ion particle and 

energy transport fluxes are then 

      


      1 , 1orb orbr r F r Q r Q r F r       .   

The particle and energy ion loss fractions given by Eqs. 21 and 23 are shown in 

Figs. 16 and 17.  The ion orbit loss fractions from inner flux surfaces increase after the L-

H transition (>1525 ms) because the increase in ion temperature enables a larger fraction 

of the ion distribution to access loss orbits. 
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FIGURE 16: Particle ion orbit loss fractions 

 

FIGURE 17: Energy ion orbit loss fractions 

 

 The effect of these ion orbit loss fractions on the “transport” fluxes is largest just 

inside the separatrix, where it significantly reduces the 


 and Q


 relative to   and Q , 

respectively. 
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FIGURE 18: Ion particle flux with ion orbit loss correction 
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FIGURE 19: Ion heat flux with ion orbit loss correction 
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4.2 Interpretation of particle transport 

Particle transport is determined by momentum balance.  The toroidal and radial 

components of the second velocity moment, or momentum balance, equation may be 

written for any ion species “j” 

 
 [ ] A

j j jk dj j jk k j j j j rj jn m V V n e E n e B V M                (24) 

and  
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    (25) 

where “k” in general refers to a sum over other ion species.  In this paper “j” will refer to 

the main ion (deuterium) and “k” to the impurity ion (carbon) in a two-species model.   

The quantity νdj is a toroidal angular momentum transfer frequency which 

represents the combined effect of viscosity, inertia, atomic physics, and other 

“anomalous” processes.  Justification for representing the toroidal momentum transfer 

processes in this form is discussed in Ref. 33.  jM is the toroidal momentum input, ej 

refers to the charge of species “j” and the other symbols have their usual meaning. 

 Subject to the assumption that there is a single impurity species “k” with the same 

logarithmic derivative and the same local temperature as the main ions “j”, Eqs. 24 and 

25 can be combined to arrive at a constraint on the main ion pressure gradient
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where the “diffusion coefficient” is 
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and the “pinch velocity” 
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is a  collection of normalized forces associated with the electric field, VxB forces and 

beam momentum input.   

The fundamental transport coefficients that determine the main ion diffusion 

coefficient are the momentum exchange frequencies with impurities ( jk ) and with 

neutrals ( cx  ), and the momentum exchange frequencies across flux surfaces due to 

viscosity and inertia, and any anomalous momentum exchange processes (the latter two 

are included in νdj ). 

If both the deuterium and carbon toroidal rotation velocities were measured, as is 

becoming possible, then Eqs. 24 for deuterium and carbon could just be solved for νdj and 

νdk , using the measured velocities as input.  In the more common situation where only 

the ccarbon toroidal velocity is measured, it is necessary to resort to a perturbation 

analysis of Eqs. 24 for deuterium and carbon. Which lead34,35. 

 

   
  exp

A A
j j j j j k k k k k

dj

j j k k k

n e E e B M n e E e B M

n m n m V

     




      




      (29) 

and for the carbon impurity ion 
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 

 
exp

0( )
A

j j j j j j j dj k

j k

j j jk dj

n e E e B M n m V
V V

n m

   
 



 

   
 


      (31) 

is the first order perturbation estimate of the difference in deuterium and carbon toroidal 

rotation velocities.   

 The momentum balance requirement of Eq. 26 can be rearranged into a form that 

clearly exhibits the diffusive and the non-diffusive components of the radial particle flux 


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The more general case when the assumption made above about the impurity distribution 

is not made is treated in Ref. 33.   

 The ion-impurity collision frequencies evaluated using the experimental densities 

and temperatures, the inferred experimental momentum transfer frequencies of Eq. 29 for 

deuterium and the resulting deuterium diffusion coefficient of Eq. 27  are displayed in 

Figs. 20 - 22.   

 

FIGURE 20: Ion-Impurity collision frequencies 
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FIGURE 21: Toroidal momentum transfer frequencies 

 The abrupt increase in momentum transport frequency centered about 0.98   

for the 1555 time is associated with the measured reduction in toroidal rotation in this 

region at that time, as shown in Fig. 7.  This peaking in the momentum transfer frequency 

is directly reflected  as a peak in the diffusion coefficient, as seen in Fig. 22. 
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FIGURE 22: Diffusion Coefficients 
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 The pinch velocity is slightly outward in L-mode, except just inside the separatrix, 

but a strongly inward pinch velocity develops over the region 0.97  immediately after 

the L-H transition (between 1525 and 1555 ms), as shown in Fig. 23.  The various 

component of the pinch velocity expression of Eq. 28 are plotted separately in Fig. 24.  In 

L-mode (1525 ms), the rE  and V  components are oppositely directed and almost cancel, 

leaving a small pinch velocity.  Immediately after the L-H transition (1555 ms) the 

rE component becomes strongly inward, reflecting the strong negative value of the radial 

electric field just after the L-H transition, and these two dominant components reinforce 

each other to produce a strongly inward pinch velocity.  At later times the rE  and 

V components becomes less strongly inward, as does the net pinch velocity. 

 

FIGURE 23: Pinch Velocity 
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FIGURE 24:  Components of the pinch velocity for selected time 

 

4.3 Thermal conduction 

 The heat conduction relation  
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is used to determine the thermal diffusivity from the experimental temperature profiles  
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where exp
,j eQ is obtained by solving Eq. 15 or 16 for the total heat flux (and correcting for 

ion orbit loss for the ions) , and exp
j is obtained by solving Eq. 14 for the total radial 
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particle flux (and correcting for ion orbit loss) and exp
e is constructed there from taking 

into account impurities.   

 The electron thermal diffusivity decrease immediately after the L-H transition 

(between 1525 and 1555 ms) and generally continues to decrease as the H-mode evolves, 

forming a “well” or “transport barrier” that moves inward with time following the L-H 

transition. 

 

FIGURE 25: Experimental electron thermal diffusivity 

 

 The ion thermal diffusivity also decreases at the L-H transition and continues to 

decrease as the H-mode evolves, as shown in Fig. 26 and 27, but does not seem to form 

the “well” or “transport barrier” structure seen for the electron thermal diffusivity.  The 

strong effect upon the interpreted ion thermal diffusivity just inside the separatrix of the 

ion orbit loss correction can be seen by comparing Figs. 26 and 27. 
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FIGURE 26: Experimental ion thermal diffusivity with ion orbit loss correction. 

 

FIGURE 27: Experimental ion thermal diffusivity without ion orbit loss correction. 
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CHAPTER 4 

SUMMARY AND CONCLUSION 

 

 The evolution of diffusive and non-diffusive transport during a L-H transition has 

been interpreted from a force-balance analysis of the measured density, temperature and 

rotation velocities in the plasma edge of a DIII-D discharge.  

Observation of experimentally obtained density, temperature and rotational 

velocity profiles indicate large changes in plasma behavior early in transition.  Close 

examination of measured parameters indicate that most significant changes occur when 

the plasma transitons from L-mode (1525ms) to early (transitional) H-mode (1555-

1590ms).   While the most significant changes occur in first 30-70ms into the transition, 

the measured profiles continue to evolve, non-monotonically, over another several 

hundred milliseconds. 

Momentum balance requires that the radial particle flux satisfies a “pinch-

diffusion” relations and defines the values of the diffusion coefficient and the pinch 

velocity in terms of quantities that can be determined from experiment.  The deuterium 

diffusion coefficient can be determined from measured quantities: the ion-impurity 

collision frequency, which can be determined from the measured densities and 

temperatures; and the momentum transport frequency, which can be inferred from the 

measured toroidal rotation velocities.  The unmeasured Deuterium rotational velocity 

profile and the Deuterium and Carbon momentum transport frequencies are determined 

from the measured Carbon toroidal rotation velocity by using first order perturbation 

theory.   

The measured Carbon toroidal rotation velocity and the Deuterium toroidal 

rotational velocity calculated from it are observed to decrease in the outer plasma edge 

immediately following the L-H transition, whereas they increase immediately after the L-
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H transition for 0.95  .  This causes an increase in the interpreted momentum transport 

frequencies for 0.95  , which produces a sharp peaking in the interpreted Deuterium 

diffusion coefficient immediately after the L-H transition.  This structure for  0.95   

gradually disappears from the measured rotation velocity and the interpreted diffusion 

coefficient profiles at later times.  The overall effect is a transition from a diffusion 

coefficient profile in L-mode that increases sharply with radius for 0.95   to a fully 

developed H-mode diffusion coefficient profile in which the H-mode value  is about 

twice the L-mode value for  0.95  , but for which there is a pronounced reduction 

relative to L-mode and a ‘transport barrier’ well-like structure of the diffusion coefficient 

for 0.95  . 

The pinch velocity is a collection of normalized electromagnetic forces specified 

by momentum balance requirements in which there are terms proportional to the toroidal 

and poloidal rotation velocities, a term proportional to the radial electric field, and 

(smaller) terms proportional to external momentum torques and the induced toroidal 

electric field.  In this discharge, the radial electric field and the poloidal velocity terms 

were dominant.  The radial electric field, which was calculated from the radial 

momentum balance using measured Carbon density, temperature and rotation velocities, 

changed dramatically from the small, positive and relatively flat L-mode profile to a 

profile which increased to positive values an order of magnitude larger (10-20 kV) for  

0.95   but became strongly negative for 0.95   (-10-20kV) immediately following 

the L-H transition.  The Deuterium poloidal rotation velocity also changed dramatically 

from the small, positive and relatively flat L-mode profile (calculated from the Deuterium 

radial momentum balance) to a H-mode profile strongly peaked (20-30 km/s) for 

0.95  .  The net effect of these two dominant terms was to produce a dramatic change 
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in the small  10 /m s  inward pinch velocity in the outer region of the  L-mode edge 

plasma to a large  100 /m s  inward pinch velocity in H-mode. 

Thus, immediately following the L-H transition, there is a factor of 10  increase 

in the inward particle pinch velocity and a factor 2 decrease in the particle diffusion 

coefficient.   

Electron and ion thermal/heat diffusivity profiles also exhibit significant change 

in magnitude as plasma enters transition phase.  Initially, both diffusivity profiles are 

relatively flat across the edge region in L-mode.  Sharp decrease in both electron and ion 

diffusivity profiles are observed in early transition (1555ms).  Such reduction in 

diffusivity is an indication of i) particle and energy confinement improvements and ii) 

development of transport barrier.  Non-monotonic changes in thermal diffusivity profiles 

are observed after significant change occurs.   

Calculation of ion-orbit loss effects across the edge region indicates steady 

increase in both particle and energy loss fractions as a function of time as plasma enters 

H-mode confinement.  Results of ion and energy loss fraction are entered into ion heat 

diffusivity calculation to account for its effect.  While resulting profiles indicate similar 

conclusion where the heat diffusivity decreases drastically from 1525ms to 1590ms, 

inclusion of ion-orbit loss effect cause a drastic drop in thermal diffusivity at the edge of 

plasma.  

Based on obtained results, a conclusion can be drawn that majority of edge 

pedestal development occurs early in confinement mode transition.  All parameters 

exhibit a substantial change between 1525 (L-mode) and 1555 (early transition) ms and a 

further significant change between  1555 and 1590 ms. As plasma enters further into the 

transition and H-mode, rather small and non-monotonic changes in profiles take place.  In 

order to obtain detailed plasma behavior, more highly time-resolved data over the first 

50-100 ms after the L-H transition should be obtained.   Future investigation should 
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include examination of various discharges that undergo confinement mode transition to 

establish a plasma behavior model.  Determination of plasma behavior model will enable 

development of transient predictive model to predict plasma behavior through 

confinement mode transition.    
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